The Equivalence of Convergence Results of Modified Mann and Ishikawa Iterations with Errors without Bounded Range Assumption

نویسندگان

  • Zhiqun Xue
  • Yaning Wang
  • Haiyun Zhou
  • Yongfu Su
چکیده

and Applied Analysis 3 The aim of this paper is to prove the equivalence of convergent results of above Ishikawa andMann iterations with errors for generalized asymptoticallyΦ-strongly pseudocontractive mappings without bounded range assumptions in uniformly smooth real Banach spaces. For this, we need the following concepts and lemmas. Definition 1.4 see 4 . The mapping T is called generalized asymptotically Φ-strongly pseudocontractive if 〈 Tx − Ty, j(x − y)〉 ≤ kn ∥∥x − y∥∥2 −Φ(∥∥x − y∥∥), n ≥ 0, 1.6 where j x − y ∈ J x − y , {kn} ⊂ 1, ∞ is converging to one and Φ : 0, ∞ → 0, ∞ is strictly increasing continuous function with Φ 0 0. Definition 1.5 see 4 . For arbitrary given x0 ∈ D, modified Ishikawa iterative process with errors {xn}n 0 defined by yn 1 − bn − dn xn bnTxn dnwn, n ≥ 0, xn 1 1 − an − cn xn anTyn cnvn, n ≥ 0, 1.7 where {vn}, {wn} are any bounded sequences in D; {an}, {bn}, {cn}, {dn} are four real sequences in 0, 1 and satisfy an cn ≤ 1, bn dn ≤ 1, for all n ≥ 0. If bn dn 0, we define modified Mann iterative process with errors {zn} by zn 1 1 − an − cn zn anTzn cnun, n ≥ 0, 1.8 where {un} is any bounded sequence in D. Lemma 1.6 see 7 . Let E be a uniformly smooth real Banach space and let J : E → 2E be a normalized duality mapping. Then ∥∥x y∥∥2 ≤ ‖x‖ 2〈y, J(x y)〉, 1.9 for all x, y ∈ E. Lemma 1.7 see 8 . Let {ρn}n 0 be a nonnegative sequence which satisfies the following inequality: ρn 1 ≤ 1 − λn ρn σn, n ≥ 0, 1.10 where λn ∈ 0, 1 with ∑∞ n 0 λn ∞, σn o λn . Then ρn → 0 as n → ∞. 2. Main Results First of all, we give a new concept. 4 Abstract and Applied Analysis Definition 2.1. Amapping T : D → D is called uniformly generalized Lipschitz if there exists a constant L > 0 such that ∥∥Tnx − Tny∥∥ ≤ L(1 ∥∥x − y∥∥), ∀x, y ∈ D, ∀n ≥ 0. 2.1 It is mentioned to notice that if T has bounded range, then it is uniformly generalized Lipschitz. In fact, since R T ⊆ R T , then supx∈D{‖Tx‖} ≤ supx∈D{‖Tx‖} M1, thus ‖Tnx − Tny‖ ≤ 2M1 ≤ L 1 ‖x − y‖ , where L 2M1. On the contrary, it is not true in general See 6 . In the following, we prove the main theorems of this paper. Theorem 2.2. Let E be an arbitrary uniformly smooth real Banach space, let D be a nonempty closed convex subset of E, and let T : D → D be a uniformly generalized Lipschitz generalized asymptotically Φ-strongly pseudocontractive mapping with q ∈ F T / ∅. Let {an}, {bn}, {cn}, {dn} be four real sequences in 0, 1 and satisfy the following conditions: i an cn ≤ 1, bn dn ≤ 1; ii an, bn, dn → 0 as n → ∞ and cn o an ; iii Σn 0an ∞. For some x0, z0 ∈ D, let {un}, {vn}, {wn} be any bounded sequences in D, and let {xn} and {zn} be Ishikawa and Mann iterative sequences with errors defined by 1.7 and 1.8 , respectively. Then the following conclusions are equivalent: 1 {xn} converges strongly to the unique fixed point q of T ; 2 {zn} converges strongly to the unique fixed point q of T . Proof. 1 ⇒ 2 is obvious, that is, let bn dn 0, 1.7 turns into 1.8 . We only need to show that 2 ⇒ 1 . Since T : D → D is a uniformly generalized Lipschitz generalized asymptotically Φ-strongly pseudocontractive mapping, then there exists a strictly increasing continuous function Φ : 0, ∞ → 0, ∞ with Φ 0 0 such that 〈 Tx − Ty, J(x − y)〉 ≤ kn ∥∥x − y∥∥2 −Φ(∥∥x − y∥∥), 2.2 that is, 〈 knI − T x − knI − T y, J ( x − y)〉 ≥ Φ(∥∥x − y∥∥), 2.3 ∥∥Tnx − Tny∥∥ ≤ L(1 ∥∥x − y∥∥), 2.4 for any x, y ∈ D. For convenience, denote k supn{kn}. Step 1. There exists x0 ∈ D and x0 / Tx0 such that r0 k L ‖x0−q‖ L‖x0−q‖ ∈ R Φ range of Φ . Indeed, if Φ r → ∞ as r → ∞, then r0 ∈ R Φ ; if sup{Φ r : r ∈ 0, ∞ } r1 < ∞with r1 < r0, then, for q ∈ D, there exists a sequence {νn} inD such that νn → q as n → ∞ with νn / q. Furthermore, there exists a natural number n0 such that k L ‖νn−q‖ L‖νn−q‖ < Abstract and Applied Analysis 5 r1/2 for n ≥ n0, thenwe redefine x0, r0 such that x0 νn0 , r0 k L ‖x0−q‖ L‖x0−q‖ ∈ R Φ . Hence, it is to ensure that Φ−1 r0 is well defined. Step 2. For any n ≥ 0, {xn} is a bounded sequence. Set R Φ−1 r0 . From 2.3 , we have 〈 kn ( x0 − q ) − Tnx0 − q ) , J ( x0 − q )〉 ≥ Φ∥x0 − q ∥∥), 2.5and Applied Analysis 5 r1/2 for n ≥ n0, thenwe redefine x0, r0 such that x0 νn0 , r0 k L ‖x0−q‖ L‖x0−q‖ ∈ R Φ . Hence, it is to ensure that Φ−1 r0 is well defined. Step 2. For any n ≥ 0, {xn} is a bounded sequence. Set R Φ−1 r0 . From 2.3 , we have 〈 kn ( x0 − q ) − Tnx0 − q ) , J ( x0 − q )〉 ≥ Φ∥x0 − q ∥∥), 2.5 that is, k L ‖x0 − q‖2 L‖x0 − q‖ ≥ Φ ‖x0 − q‖ . Thus, we obtain that ‖x0 − q‖ ≤ R. Denote B1 { x ∈ D : ∥∥x − q∥∥ ≤ R}, B2 { x ∈ D : ∥∥x − q∥∥ ≤ 2R}, M supn ∥vn − q ∥∥} supn ∥wn − q ∥∥}. 2.6 Next, we want to prove that xn ∈ B1 for any n ≥ 0 by induction. If n 0, then x0 ∈ B1. Now we assume that it holds for some n, that is, xn ∈ B1. We prove that xn 1 ∈ B1. Suppose that it is not the case, then ‖xn 1 − q‖ > R. Since J is uniformly continuous on bounded subset of E, then, for 0 Φ R/4 /24L 1 2R , there exists δ > 0 such that ‖Jx − Jy‖ < 0 when ‖x − y‖ < δ, for allx, y ∈ B2. Now denote τ0 min { R 2 L 1 2R 2R M , R 4 L 1 R 2R M , δ 2 L 1 2R 2R M , Φ R/4 24R2 , Φ R/4 24L 1 2R , Φ R/4 48MR } . 2.7 Since an, bn, cn, dn → 0 as n → ∞, and cn o an , without loss of generality, we assume that 0 ≤ an, bn, cn, dn ≤ τ0, cn < anτ0 for any n ≥ 0. Then we obtain the following estimates: ∥Tnxn − q ∥∥ ≤ L(1 ∥xn − q ∥∥) ≤ L 1 R , ∥yn − q ∥∥ ≤ 1 − bn − dn ∥xn − q ∥∥ bn ∥Tnxn − q ∥∥ dn ∥wn − q ∥∥ ≤ R bnL ( 1 ∥xn − q ∥∥) dnM ≤ R bnL 1 R dnM ≤ R τ0 L 1 R M ≤ 2R, ∥Tnyn − q ∥∥ ≤ L(1 ∥yn − q ∥∥) ≤ L 1 2R , 6 Abstract and Applied Analysis ‖xn − Txn‖ ≤ ∥xn − q ∥∥ ∥Tnxn − q ∥∥ ≤ L 1 L ∥xn − q ∥∥ ≤ L 1 L R, ∥xn − q ) − yn − q )∥∥ ≤ bn‖xn − Txn‖ dn ∥wn − q ∥∥ ∥xn − q ∥∥] ≤ bn L 1 L R dn M R ≤ τ0 L 1 R 2R M ≤ τ0 L 1 2R 2R M ≤ δ 2 < δ, ∥xn − q ∥∥ ≥ ∥xn 1 − q ∥∥ − an ∥Tnyn − xn ∥∥ − cn‖vn − xn‖ ≥ ∥xn 1 − q ∥∥ − an ∥Tnyn − q ∥∥ ∥xn − q ∥∥] − cn ∥xn − q ∥∥ ∥vn − q ∥∥] > R − an L 1 2R R − cn R M ≥ R − τ0 L 1 2R M 2R ≥ R − R 2 R 2 , ∥yn − q ∥∥ ≥ ∥xn − q ∥∥ − bn‖Txn − xn‖ − dn‖xn −wn‖ ≥ ∥xn − q ∥∥ − bn L 1 L R − dn ∥xn − q ∥∥ ∥wn − q ∥∥] ≥ ∥xn − q ∥∥ − bn L 1 L R − dn R M ≥ ∥xn − q ∥∥ − τ0 L 1 R 2R M > R 2 − R 4 R 4 , ∥xn 1 − q ∥∥ ≤ 1 − an − cn ∥xn − q ∥∥ an ∥Tnyn − q ∥∥ cn ∥vn − q ∥∥ ≤ R τ0 L 1 2R M ≤ 2R, ∥xn 1 − q ) − xn − q )∥∥ ≤ an ∥Tnyn − xn ∥∥ cn‖un − xn‖ ≤ an ∥Tnyn − q ∥∥ ∥xn − q ∥∥] cn ∥vn − q ∥∥ ∥xn − q ∥∥] ≤ an L 1 2R R cn M R ≤ τ0 L 1 2R 2R M ≤ δ 2 < δ. 2.8 Hence, ‖J xn − q − J yn − q ‖ < 0; ‖J xn 1 − q − J xn − q ‖ < 0. Abstract and Applied Analysis 7and Applied Analysis 7 Using Lemma 1.6 and formulas above, we obtain ∥xn 1 − q ∥∥2 ≤ 1 − an − cn 2 ∥xn − q ∥∥2 2an 〈 Tyn − q, J ( xn 1 − q )〉 2cn 〈 un − q, J ( xn 1 − q )〉 ≤ 1 − an 2 ∥xn − q ∥∥2 2an 〈 Tyn − q, J ( xn 1 − q ) − Jxn − q )〉 2an 〈 Tyn − q, J ( xn − q ) − Jyn − q )〉 2an 〈 Tyn − q, J ( yn − q )〉 2cn 〈 un − q, J ( xn 1 − q )〉 ≤ 1 − an 2 ∥xn − q ∥∥2 2an ∥Tnyn − q ∥∥ · ∥Jxn 1 − q ) − Jxn − q )∥∥ 2an ∥Tnyn − q ∥∥ · ∥Jxn − q ) − Jyn − q )∥∥ 2an ∥∥yn − q ∥∥2 −Φ∥yn − q ∥∥)] 2cn ∥un − q ∥∥ · ∥xn 1 − q ∥∥ ≤ 1 − an R2 4anL 1 2R 0 2an ∥∥yn − q ∥∥2 −Φ∥yn − q ∥∥)] 4cnMR, 2.9 ∥yn − q ∥∥2 ≤ 1 − bn − dn 2 ∥xn − q ∥∥2 2bn 〈 Txn − q, J ( yn − q )〉 2dn 〈 wn − q, J ( yn − q )〉 ≤ ∥xn − q ∥∥2 2bn 〈 Txn − q, J ( yn − q ) − Jxn − q )〉 2bn 〈 Txn − q, J ( xn − q )〉 2dn ∥wn − q ∥∥ · ∥yn − q ∥∥ ≤ ∥xn − q ∥∥2 2bn ∥∥Tx n − q ∥∥ · ∥Jyn − q ) − Jxn − q )∥∥ 2bn ∥∥xn − q ∥∥2 −Φ∥xn − q ∥∥)] 2dn ∥wn − q ∥∥ · ∥yn − q ∥∥ ≤ R2 2bnL 1 R 0 2bnR 4dnMR. 2.10 Substitute 2.10 into 2.9 ∥xn 1 − q ∥∥2 ≤ 1 − an R2 4anL 1 2R 0 2an [ R2 2bnL 1 R 0 2bnR 4dnMR ] − 2anΦ ∥yn − q ∥∥) 4cnMR ≤ R2 anR 4anL 1 2R 0 2an [ 2bnL 1 R 0 2bnR 4dnMR ] − 2anΦ ( R 4 ) 4cnMR 8 Abstract and Applied Analysis R2 2an [ an 2 R2 2L 1 2R 0 2bnL 1 R 0 2bnR 4dnMR 2cnMR an ]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Equivalence of Mann and Ishikawa Iterations Dealing with Ψ−uniformly Pseudocontractive Maps without Bounded Range

We prove that Mann and Ishikawa iterations are equivalent models dealing with ψ-uniformly pseudocontractive or d-weakly contractive maps without bounded range.

متن کامل

The Equivalence among the Modified Mann–ishikawa and Noor Iterations for Uniformly L–lipschitzian Mappings in Banach Spaces

In this paper, the equivalence of the convergence among Mann-Ishikawa and Noor iterations is obtained for uniformly L-Lipschitzian mappings in real Banach spaces. Our results extend and improve the corresponding results in Chang [3] and Ofoedu [4]. Mathematics subject classification (2010): 47H10, 47H09, 46B20..

متن کامل

The Equivalence of Convergence Results between Ishikawa and Mann Iterations with Errors for Uniformly Continuous Generalized Φ-Pseudocontractive Mappings in Normed Linear Spaces

We prove the equivalence of the convergence of the Mann and Ishikawa iterations with errors for uniformly continuous generalized Φ-pseudocontractive mappings in normed linear spaces. Our results extend and improve the corresponding results of Xu, 1998, Kim et al., 2009, Ofoedu, 2006, Chidume and Zegeye, 2004, Chidume, 2001, Chang et al. 2002, Liu, 1995, Hirano and huang, 2003, C. E. Chidume and...

متن کامل

The Convergence Theorems for Common Fixed Points of Uniformly L-lipschitzian Asymptotically Φ-pseudocontractive Mappings

In this paper, we show that the modified Mann iteration with errors converges strongly to fixed point for uniformly L-Lipschitzian asymptotically Φ-pseudocontractive mappings in real Banach spaces. Meanwhile, it is proved that the convergence of Mann and Ishikawa iterations is equivalent for uniformly L-Lipschitzian asymptotically Φpseudocontractive mappings in real Banach spaces. Finally, we o...

متن کامل

On Equivalence between Convergence of Ishikawa––mann and Noor Iterations

In this paper, we prove the equivalence of convergence between the Mann–Ishikawa– Noor and multistep iterations for Φ− strongly pseudocontractive and Φ− strongly accretive type operators in an arbitrary Banach spaces. Results proved in this paper represent an extension and refinement of the previously known results in this area. Mathematics subject classification (2010): 47H09, 47H10, 47H15.

متن کامل

Weak and Strong Convergence Theorems for Finite Family of Nonself Asymptotically Nonexpansive Mappings in Banach Space

In this paper, several weak and strong convergence theorems are established for a new modified iterations with errors for finite family of nonself asymptotically nonexpansive mappings in Banach spaces. Mann-type, Ishikawa-type and Noor-type iterations are covered by the new iteration scheme. Our convergence theorems improve, unify and generalize many important results in the current literatures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014